Sensory Motor Plasticity and Visual Observation of Action

A powerful idea in neuroscience links motor control with action observation. Recent work has demonstrated that when we observe the actions of others we activate the same neural circuitry responsible for planning and executing our own actions. While much of the work in this area has been centered around cognitive and social mechanisms such as action understanding, empathy and theory of mind, we have been pursuing a wholly different idea, namely that neural mechanisms linking observation and action also facilitate neuroplasticity in somatosensory and motor regions of the brain, and can result in benefits for motor skill learning.

Neuroplasticity, Motor Learning and Sensory Systems

A large body of research has explored how adaptation in sensory systems (e.g. vision and proprioception) affects motor performance, however we know little about how motor learning affects the function of sensory systems. The goal of this project is to explore changes in visual and somatosensory systems as a consequence of motor action and in particular, motor learning. Experiments are designed to test the hypothesis that visual and somatosensory processing are modulated in specific ways with recent motor behaviour and are further modified after motor learning. The idea is that motor learning changes not only motor behaviour, but also changes how we sense and perceive our own actions, and the world around us.

Computational Models of Neuromuscular Control

We develop computational models of neuromuscular systems such as the arm to test hypotheses about how the brain controls voluntary movement, and how motor learning is achieved. An emphasis is placed on including realistic physiological, mechanical and neural properties of the neuromuscular system. We use models to study the form of time-varying control signals to muscles that the central nervous system must generate to produce voluntary movement. We combine model predictions with empirical measurements of limb kinematics and patterns of muscle activation measured using electromyography.

Neural Control of Limb Stiffness

Whereas there has been extensive work on the neural mechanisms that subserve voluntary limb movement, comparatively little is known about how the motor system modulates the mechanical properties of the limb through the neural control of limb stiffness. Our long-term goal is to understand how stiffness control is integrated into the ongoing control of movement and how it is used in an adaptive fashion during interactions with the environment. We view stiffness control as playing an active part in producing movements that differ in rate, trajectory requirements and accuracy and in maintaining stability when manipulating objects.

Research Funding

Our research is (or has in the past been) funded by grants from NSERC (Canada), CIHR (Canada) and NIH (USA).